Protein kinase A induces UCP1 expression in specific adipose depots to increase energy expenditure and improve metabolic health.

نویسندگان

  • Lorna M Dickson
  • Shriya Gandhi
  • Brian T Layden
  • Ronald N Cohen
  • Barton Wicksteed
چکیده

Adipose tissue PKA has roles in adipogenesis, lipolysis, and mitochondrial function. PKA transduces the cAMP signal downstream of G protein-coupled receptors, which are being explored for therapeutic manipulation to reduce obesity and improve metabolic health. This study aimed to determine the overall physiological consequences of PKA activation in adipose tissue. Mice expressing an activated PKA catalytic subunit in adipose tissue (Adipoq-caPKA mice) showed increased PKA activity in subcutaneous, epididymal, and mesenteric white adipose tissue (WAT) depots and brown adipose tissue (BAT) compared with controls. Adipoq-caPKA mice weaned onto a high-fat diet (HFD) or switched to the HFD at 26 wk of age were protected from diet-induced weight gain. Metabolic health was improved, with enhanced insulin sensitivity, glucose tolerance, and β-cell function. Adipose tissue health was improved, with smaller adipocyte size and reduced macrophage engulfment of adipocytes. Using metabolic cages, we found that Adipoq-caPKA mice were shown to have increased energy expenditure, but no difference to littermate controls in physical activity or food consumption. Immunoblotting of adipose tissue showed increased expression of uncoupling protein-1 (UCP1) in BAT and dramatic UCP1 induction in subcutaneous WAT, but no induction in the visceral depots. Feeding a HFD increased PKA activity in epididymal WAT of wild-type mice compared with chow, but did not change PKA activity in subcutaneous WAT or BAT. This was associated with changes in PKA regulatory subunit expression. This study shows that adipose tissue PKA activity is sufficient to increase energy expenditure and indicates that PKA is a beneficial target in metabolic health.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat

Thermogenic brown and beige adipose tissues dissipate chemical energy as heat, and their thermogenic activities can combat obesity and diabetes. Herein the functional adaptations to cold of brown and beige adipose depots are examined using quantitative mitochondrial proteomics. We identify arginine/creatine metabolism as a beige adipose signature and demonstrate that creatine enhances respirati...

متن کامل

The Therapeutic Potential of Brown Adipocytes in Humans

Obesity and its metabolic consequences represent a significant clinical problem. From a thermodynamic standpoint, obesity results from a discord in energy intake and expenditure. To date, lifestyle interventions based on reducing energy intake and/or increasing energy expenditure have proved ineffective in the prevention and/or treatment of obesity, owing to poor long-term adherence to such int...

متن کامل

Apolipoprotein A-I possesses an anti-obesity effect associated with increase of energy expenditure and up-regulation of UCP1 in brown fat

Apolipoprotein A-I (ApoA-I) is the most abundant protein constituent of high-density lipoprotein (HDL). Reduced plasma HDL and ApoA-I levels have been found to be associated with obesity and metabolic syndrome in human beings. However, whether or not ApoA-I has a direct effect on obesity is largely unknown. Here we analysed the anti-obesity effect of ApoA-I using two mouse models, a transgenic ...

متن کامل

Coordinate mobilization and burning of lipid stores. Focus on "Protein kinase A induces UCP1 expression in specific adipose depots to increase energy expenditure and improve metabolic health".

THE STORAGE OF ENERGY AS LIPID droplets is an essential physiology process from yeast, worms, and flies to mammals (4). In lean humans, up to 90% of carbohydrate and lipid energy stores are found in white adipose tissue (WAT), providing an essential buffer for prolonged stressors, such as pregnancy or illness. However, in the past two decades, energy storage in WAT has taken on a much more pern...

متن کامل

Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations

Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 311 1  شماره 

صفحات  -

تاریخ انتشار 2016